The Chemistry of Acids & Bases

: C 01	
: S-84	
	-

STUD	Y LIST From Paul Groves
Brønsted-Lowry Acids	pH, pOH, [H⁺], and [OH ⁻]
I can	\Box write the equation for the autoionization of H ₂ O.
recognize common acids and bases.	recognize that every aqueous solution contains
\Box write balanced equations for their ionization in	both $[H^+]$ ions and $[OH^-]$ ions.
water.	\Box write the K _w expression for H ₂ O and know the
\Box demonstrate that H ₂ O can sometimes be	value of $K_w = [H^+] [OH^-] = 1 \ge 10^{-14} @ 25^{\circ}C.$
included as a reactant in ionization equations.	\Box use K _w to calculate [H ⁺] and [OH ⁻].
recognize when a substance can be amphoteric.	\Box state that pH = -log[H ⁺] and pOH = -log[OH ⁻]
explain that a Brønsted base (proton acceptor) needs a lone pair while a Brønsted acid (proton donor) requires a proton (H atom) to donate.	recognize that the [H ⁺] of a strong acid solution comes from the concentration of the acid but the [H ⁺] of a weak acid solution requires an
state the definition of Brønsted acid and base.	equilibrium calculation.
recognize a Brønsted acid and base in a reaction	\Box calculate [H ⁺] as 10 ^{-pH}
and identify its conjugate.	determine the number of significant figures in a pH calculation.
Strengths of Acids & Bases	r
\Box use Tables 17.3 and 17.4 to decide on the	Equilibrium Calculations
relative strengths of acids and bases.	\Box write the K _a and K _b expressions for weak acids
L explain the relative strengths of oxoacids such	and bases.
as HOCl, HOBr, and HOI as HOCl, HClO ₂ , HClO ₃ , and HClO ₄	solve "ice box" problems for acid and base
\Box explain the relative strengths of acids such as	equilibria.
HF, HCl, HBr, and HI or	□ correctly use the "x is small enough to ignore"
H_2O , H_2S , H_2Se , and H_2Te	approximation. \Box
recognize that a very strong acid has a weak	\square know when to use the short cut for K _a problems
conjugate base and a very weak acid has a	$x = \sqrt{K_a \times [HA]_i}$ where HA = generalized acid
strong conjugate base.	(this also applies to K _b problems)
recognize that a weak acid may have a weak	Hydrolysis
conjugate base. \Box	state that salts (ionic compounds) can make a
└ compare the conjugate bases of two acids with known relative strengths.	solution acidic, basic, or have no effect on the
state that an acid-base equilibrium favors the	
weak acid and weak base:	write the ionization equations for the conjugate base of a weak acid, $A^- + H_2O \leftrightarrows HA + OH^-$
$NH_3 + H_2O \leftrightarrows NH_4^+ + OH^-$	
\Box explain the above situation in terms of the	determine the K_b of a conjugate base from the K_a of its acid knowing $K_a \cdot K_b = K_w$
strong donor having donated and the strong	aclculate the pH of a salt solution that contains
acceptor having accepted.	the conjugate base of a weak acid or the
\square know the strong acids and bases.	conjugate acid of a weak base.

What Can Be Acids?

- ☐ There are a few neutral molecules that are strong acids, HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃ & HClO₄ that dissociate 100% in water.
- Neutral molecules that are weak acids include molecules such as HF, H₂S, and oxoacids that are not listed above (H₂SO₃, HNO₂, H₂CO₃, etc.), and many organic acids, HC₂H₃O₂, HCOOH, etc.

Cations (positive ions) can be acids, such as NH4⁺, but metal ions can also make solutions acidic especially if they have 2+ or 3+ charges. They are surrounded by H₂O in solution and polarize the H-O bond enough that some of the H atoms leave. (Ex: Cu²⁺, Al³⁺, and Fe³⁺) Fe(H₂O)₆³⁺ + H₂O \leftrightarrows H₃O⁺ + Fe(H₂O)₅OH²⁺

□ Anions (negative ions) can also be acids. If an anion still has a H atom, it can donate it.
 Common examples are bicarbonate ion, HCO₃⁻ and dihydrogen phosphate ion, H₂PO₄⁻, which acts as the acid in baking soda.

Diprotic Acids

write the two acid ionization steps for any diprotic acid.

Example:
$$H_2S + H_2O \leftrightarrows H_3O^+ + HS^-$$

 $HS^- + H_2O \leftrightarrows H_3O^+ + S^{2-}$
 $K_{a1} = \frac{\left[H_3O^+ \left[HS^-\right]\right]}{\left[H_2S\right]} \quad K_{a2} = \frac{\left[H_3O^+ \left[S^{2-}\right]\right]}{\left[HS^-\right]}$
 $K_{a1} = 1 \times 10^{-7} \quad K_{a2} = 1 \times 10^{-19}$

 \Box state that the first ionization constant, K_{a1}, is always larger than the second constant, K_{a2}.

state that the only strong diprotic acid, H₂SO₄, is only strong for the first ionization. $K_{a2} = 1.2 \times 10^{-2}$. explain that when calculating the pH of a diprotic acid, only the first ionization needs to be considered.

$H_2S + H_2O \rightleftharpoons H_{3O^+ + HS^-}$

 $HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-}$

The $[H_3O^+]$ from the first ionization is small. The $[H_3O^+]$ from the second ionization is *very* small and made even smaller by the presence of H_3O^+ from the first ionization (Le Châtelier's Principle).

Bottom Line: treat the acid as monoprotic and use K_{a1} as the K_a .

\Box state that $[S^{2-}] = K_{a2}$.

explain this fact by using information from the previous situation. Because of the first ionization:

$H_2S + H_2O \rightleftharpoons_{H_3O^+ + HS^-}$

The changes caused to these two concentrations by the second ionization are small (and made negligible by Le Châtelier's Principle.)

So,
$$K_{a2} = \frac{\left[H_{3}O^{+} S^{2^{-}}\right]}{\left[HS^{-}\right]}$$
 becomes $K_{a2} = [S^{2^{-}}]!$

 \Box combine the two ionization steps and combine the two K_a's.

$$\begin{split} H_2S + 2 \; H_2O &\leftrightarrows 2 \; H_3O^+ + S^{2-} \\ K_a &= K_{a1} \cdot \; K_{a2} = 1 \; x \; 10^{-26} \end{split}$$

☐ use this equation and K_a when a problem is given in which the pH is adjusted to a known value by the addition of another acid.

Example from the Ch 17 Practice Test:

13. What is the S²⁻ concentration in a saturated solution (0.10 <u>M</u>) of H₂S, in which the pH has been adjusted to 6.00 by the addition of HCl? For H₂S, $K_{a1} = 1.1 \times 10^{-7}$ and $K_{a2} = 1.0 \times 10^{-19}$.