The Chemistry of Acids & Bases

What Can Be Acids?

There are a few neutral molecules that are strong acids, HCl, HBr, HI, HNO3, H2SO4, $HCIO₃ \& HClO₄$ that dissociate 100% in water.

Neutral molecules that are weak acids include molecules such as HF, H2S, and oxoacids that are not listed above $(H₂SO₃, HNO₂, H₂CO₃$, etc.), and many organic acids, $HC₂H₃O₂$, HCOOH, etc.

 \Box Cations (positive ions) can be acids, such as NH⁴ + , but metal ions can also make solutions acidic especially if they have 2+ or 3+ charges. They are surrounded by H_2O in solution and polarize the H-O bond enough that some of the H atoms leave. (Ex: Cu^{2+} , Al^{3+} , and Fe^{3+}) $Fe(H₂O)₆³⁺ + H₂O \Leftrightarrow H₃O⁺ + Fe(H₂O)₅OH²⁺$

Anions (negative ions) can also be acids. If an anion still has a H atom, it can donate it. Common examples are bicarbonate ion, $HCO₃$ ⁻ and dihydrogen phosphate ion, $H_2PO_4^-$, which acts as the acid in baking soda.

Diprotic Acids

 \Box write the two acid ionization steps for any diprotic acid.

Example: $H_2S + H_2O = H_3O^+ + HS^ HS^- + H_2O \leftrightarrows H_3O^+ + S^{2-}$

$$
K_{a1} = {\mu_{3} \sigma \mu_{1} \over [H_2S]}
$$

\n $K_{a2} = {\mu_{3} \sigma \mu_{2} \over [HS]} \nK_{a1} = 1 \times 10^{-7}$
\n $K_{a2} = 1 \times 10^{-19}$

 \Box state that the first ionization constant, K_{a1}, is always larger than the second constant, K_{a2} .

L state that the only strong diprotic acid, H_2SO_4 , is only strong for the first ionization. $K_{a2} = 1.2 \times 10^{-2}$.

 \Box explain that when calculating the pH of a diprotic acid, only the first ionization needs to be considered.

$H_2S + H_2O \leftrightarrows H_3O^+ + HS^ HS^- + H_2O \leftrightarrow H_3O^+ + S^{2-}$

The $[H_3O^+]$ from the first ionization is small. The [H3O +] from the second ionization is *very* small and made even smaller by the presence of H3O + from the first ionization (Le Châtelier's Principle).

Bottom Line: treat the acid as monoprotic and use K_{a1} *as the* K_{a1} .

\Box state that $[S^2] = K_{a2}$.

explain this fact by using information from the previous situation. Because of the first ionization:

$H_2S + H_2O \leftrightarrows_{H_3O^+ + HS^-}$ $[H_3O^+] = [HS^-]$

The changes caused to these two concentrations by the second ionization are small (and made negligible by Le Châtelier's Principle.)

So, K_{a2} =
$$
\frac{[H_3O^+][S^2]}{[HS^+]}
$$
 becomes K_{a2} = [S²-]!

 \Box combine the two ionization steps and combine the two K_a 's.

 $H_2S + 2 H_2O = 2 H_3O^+ + S^2$ $K_a = K_{a1} \cdot K_{a2} = 1 \times 10^{-26}$

 \Box use this equation and K_a when a problem is given in which the pH is adjusted to a known value by the addition of another acid.

Example from the Ch 17 Practice Test:

 $\begin{bmatrix} H_3O^+ \underline{H} S^- \end{bmatrix}$ $K_{a2} = \begin{bmatrix} H_3O^+ \underline{S}^{2-} \end{bmatrix}$ solution (0.10 <u>M</u> been adjusted to [HS^{T} been adjusted to 6.00 by the addition of HCl? HS and HSS 13. What is the $S²$ concentration in a saturated solution (0.10 M) of H₂S, in which the pH has For H₂S, $K_{a1} = 1.1 \times 10^{-7}$ and $K_{a2} = 1.0 \times 10^{-19}$.